
4. 
DECISIONS 

 

One of the hardest things to do is to explain decisions. 
Specially when the mood is that "anything coming 
from outside of the team is a Top Down".  
 

Top downs are sort of a silly ghost haunting teams, which are 
hard to chase. They don't exist most of the time - what exists 
is an asymmetry of the decisions based on accountability, 
priority, urgency, execution power or capabilities. 
 
You'll see smaller teams taking over old corporate IT 
structures to build instead of buying some of the components 
of the business. You might be the one leading it, the victim in 
the losing side of it or just a passerby. Depending on it a 
decision of one team can be perceived as causing a Top 
Down to the other. 
 
The contrary movement happens too: tech as commodity — 
when all technology you have is from outside vendors. It 



comes as "We have the brains, they execute" or "you guys 
spent 2 years trying to reinvent the wheel and we're making 
an Executive decision of buying Big O software". Same 
energy and awareness issue. Where transparency failed ? 
Where all nice agile presentations were gone ? 
 
In both cases proper planning, objectives and how to 
measure success is left in second or third place in lieu of 
knee-jerk reactions. We will see that below, after The Plan. 
 
The importance of knowing what your team does as we 
discussed in the last chapter, what your company do and 
having the courage to express your point of view is that you 
will be closer to the birth of these decisions.  
 
They are not made in the cafeteria or in all hands gathering. 
But having your leader genuinely part of such decisions make 
it easy for a team to deal with them. No one feels comfortable 
with a leader that is a victim all the time. 
 
Top down decisions are result of storming out frustration and 
discussions, which if you can't negotiate your way, there is a 
potential of alienate your tech team.  
 
In all cases the side effect is people leaving because if the 
higher ups don't care, why should they ? (remember they are 
not afraid of losing their job or not finding a new one). So 
being close and managing them - better yet avoiding the 
point where they are made - is good for your team. 

https://github.com/gleicon/ebook_cto_field_guide/blob/main/index.md#the-plan


 

"ADJUSTING" THE CULTURE 
All that said, while I was writing this post's drafts I 

stumbled in some news that caught my attention in 
companies with strong engineering culture and that I see as 
an adjustment of culture in face of results they were getting. 
 
On real big companies this is as hard to see from outside as 
finding planets around distant stars. We rely on leaks, 
investors reports, outages and mass firings to get the data. 
Ah, and by "adjustment of culture" I mean top-downs. 
 
Facebook motto was "Move fast and break things", a 
motivational piece to own mistakes and quickly move 
forward. At the 2014 F8 event, they changed it to “Move Fast 
with Stable Infra”. The reasons behind it may not be different 
from other companies: investors, regulations, predictability, 
MTTR, SLAs and better customer experience. 
 

http://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability/


Yahoo published an analysis that by cutting out QA steps led 
to better quality, shorter delivery times and other goodies. It 
does not mean that they are throwing code to production 
without ensuring that automation visibility is in place. It means 
the accountability shifted from a QA team to the engineers, 
using a continuous delivery system, when the code goes live 
if anything breaks it must to be fixed within the proper SLA. 
No more CYA by complaining about QA. 

 
A couple of years ago a former Amazon engineer published 
the "Jeff Bezos Mandate". It is a commentary about Amazon 
being a platform and a list of things mandated and enforced 
at the engineering level to ensure this platform was to be: 

1. All teams will henceforth expose their data and 
functionality through service interfaces. 
2. Teams must communicate with each other through 
these interfaces. 
3. There will be no other form of interprocess 
communication allowed: no direct linking, no direct 
reads of another team’s data store, no shared-memory 
model, no back-doors whatsoever. The only 
communication allowed is via service interface calls 
over the network. 
4. It doesn’t matter what technology they use. HTTP, 
CORBA, Pubsub, custom protocols — doesn’t matter. 
Bezos doesn’t care. 
5. All service interfaces, without exception, must be 
designed from the ground up to be externalizable. That 
is to say, the team must plan and design to be able to 
expose the interface to developers in the outside world. 
No exceptions. 
6. Anyone who doesn’t do this will be fired. 

 
It doesn't seems important, but number 3 alone would 
warrant weeks of meetings at some companies and a round 
of beer on others.  
 

http://spectrum.ieee.org/view-from-the-valley/computing/software/yahoos-engineers-move-to-coding-without-a-net
https://plus.google.com/+RipRowan/posts/eVeouesvaVX


And by the rest of the post looks like Amazon enforcement 
was a bit more stronger than a weekly passive/aggressive 
reminder. 
 
What we have there: • Going from crazy to crazy with stability is required, 

find your synchronism and don't bother the business 
because you wanted to push linux as your main 
network router and it failed. 

• Cutting out the test pipeline and telling engineers to 
own their quality, not because QA is bad but because 
cutting out who to blame forces empowerment. Saying 
you haven't delivered because you didn't have a free 
QA or DBA is not acceptable. 

• Jerry-rigging your stuff on any place is enforced with 
a ban from the paradise. This basically cuts any kind of 
slack you give to people that can't design and run their 
code alone but can't make the time to work in a team 
context. Business don’t know it until they know the side 
effects. 

Look at the companies I'm talking about: Facebook, Yahoo 
and Amazon. These adjustments on culture and behaviour 
means that a set of practices and culture paid off in a way 
that the traditional processes surrounding IT didn't. 
 
These processes mean less to leadership and execs than it 
does on other kind of companies. The team owns what is in 
production respecting a certain set of rules or a limited 
freedom. Ownership, accountability and other nice words are 
used to describe this effect. 
 
But before moving to processes, I want to talk about another 
euphemism for top downs: 



DISAGREE AND COMMIT 
Disagree and commit means more than what is discussed 

on modern self-managed teams or management 3.0 material. 
Company performance awareness is important during 
growth. 
 
As we saw in the adjustments from Yahoo, Amazon and 
Facebook that we could track, there might be top downs at 
the executive level but more often disagreements will happen 
in local groups. 
 
Ideally discussions would not extend beyond what the culture 
support. Some people will be more laid back, others more 
vocal. Once in a while, you will have an argument but usually 
it settles back.  
When tech leadership is missing, there will be long 
discussions. 
 
It is useful to me to track if no action is taken while the 
discussion volume increases. If no action is taken, no one 
moves, it quickly becomes meaningless. It becomes an ego 
exercise as I mentioned before for bikeshedding. 
 
If no action is taken, if the team is constantly discussing it will 
impacts delivery. 
 
The company will look for tools to help unlocking that from a 
high executive perspective: institute devices as the ARB 
— Architectural Review Board.  
 
In an attempt of not telling people what to do or owning up 
decisions you end up with a tribune to replicate the same 
discussions in public, like old Rome. The other common 
device is bringing in outside experts. 



 
A horse designed by committee 

 
 
These are the answers of busy executives mixed with the 
generic "communication problem". There will be no 
meaningful decisions, at most the most vocal person may get 
some space but this kind of personality rarely comes with 
good execution skills. It signal strongly that there is no 
effective engineering leadership. 
 
It feels different than "disagree and commit", it is a "sit down 
and be quiet". And far from buy-in, the side that "lost" (as they 
will rightfully perceive the outcome) will just wait to get 
delighted by the failure or collectively think about leaving to 
create an impact. 
 
This may cause middle manager leadership to leave, which is 
a team as hard to build as a good engineering team. Naturally 
we think that if the not-so-good people leave we will be in a 
good spot but that's rarely the case alone.  
 
There will be different composition to the horde of unhappy, 



and there is a cascading effect coming from the conversation 
this team have out of band. It is more common that 
competent people leaves altogether. 

PROCESSES (OR WHY I LEARNED TO 
OWN PRODUCTION) 

Another "disagree and commit" point are processes. 
Traditional companies resort to ITIL a traditional IT 
methodologies in hope that it helps figure out operations and 
delivery. When it gets to development, the same formula is 
applied with Agile methodologies or equivalent factory based 
ideas. 
 
In both Development and Operations cases teams are 
assembled around these processes and meetings scheduled 
to link them to existing processes, converging to a 
spreadsheet and someone asking why deadlines are not 
being respected or how can we shrink the budget. Corporate 
managers versus Technical Managers. 



 
A devops clock 

 
At the same time in the last years DevOps, Facebook's 
Production Engineering and Google's SRE got in the middle 
of both teams, sometimes not to substitute them but as cry 
for help from development teams for more speed and 
freedom. 
 
Google released a  book on their SRE  practices, which 
describes how they deliver service and software in a reliable 
manner. Companies tries to adopt this bundle of mixed 
methods to move fast but at the same time protect their 
business. In the sections below you will see some of these 
practices selected to help you quickly get on your feet. 
 
I don’t think development and operations are not so distinct 
that they need different people and skillsets. I like to call this 
set of activities Delivery, which means the whole. Some 
business verticals and government rules require these 
activities to be separated (separation of duties) to allow your 

https://landing.google.com/sre/book.html


company to operate or to buy from you but that’s not an 
absolute role.  

 
The dev team fixed the devops clock 

 
 
On the other hand, people with limited experience and weak 
self assessment fails miserably when trusting the same things 
it takes to build CRUD apps applies to operations and the 
reverse: when thinking that by knowing Ansible and Python 
you can build business applications right away. 
 
What most traditional companies have not explored is taking 
out these processes-based roles, and probably people that 
fill these roles, out of the production pipeline. This is what 
companies like Facebook and Yahoo are saying they are 
doing when they say they shortened the path for production. 
In shorter words — distribute ownership. That is usually 
named "You build, you run". 
 
The regular production pipeline of creating software comes 
from the company/market/sales needs and ideas. It goes 
through a hopefully incremental development and 
deployment cycle and lives in an environment that is taken 



care of. 
 
Customers use the new product, ask for new features, 
complain when it is offline or broken, the company lives 
through its pain, people exchange email blaming each other 
because things are not perfect and life goes on asking 
permission on processes that should ensure quality and 
stability. 
 
In the book "High Output Management", Andy Groove 
(Former CEO of Intel) uses a breakfast factory to illustrate 
production line among other things. One of the key metrics to 
plan a proper production line is the time on the task that 
takes more time. It is an interesting book to explore as it 
embodies most of how we work today. 
 
Many scenarios are explored and it is possible to grasp the 
idea of waste, delivery time and investment on production. In 
many cases, tentative improvements to machinery in a single 
place of the production line come out as waste when put 
together at the end. I can't recommend this book enough as it 
is an historical document where you can see the beginnings 
of many of our industries practices there — for example 
OKRs. 
 
Your job requires a set of skills and ownership hard to 
achieve first hand so empathy can be used to understand 
what is going on when your organization has this division. If 
your tech org still has functional team it means that for 
whoever that is accountable in a higher level things are not 
as green as it appears. Be sure you don't know everything 
about all the things. 

https://www.amazon.com/High-Output-Management-Andrew-Grove/dp/0679762884/ref=sr_1_1?ie=UTF8&qid=1522418806&sr=8-1&keywords=high+output+management


shamelessly stolen from https://twitter.com/chopeh/status/
926074073767206912 

https://twitter.com/chopeh/status/926074073767206912
https://twitter.com/chopeh/status/926074073767206912
https://twitter.com/chopeh/status/926074073767206912

